78 research outputs found

    A Machine Learning-based Framework for Predictive Maintenance of Semiconductor Laser for Optical Communication

    Full text link
    Semiconductor lasers, one of the key components for optical communication systems, have been rapidly evolving to meet the requirements of next generation optical networks with respect to high speed, low power consumption, small form factor etc. However, these demands have brought severe challenges to the semiconductor laser reliability. Therefore, a great deal of attention has been devoted to improving it and thereby ensuring reliable transmission. In this paper, a predictive maintenance framework using machine learning techniques is proposed for real-time heath monitoring and prognosis of semiconductor laser and thus enhancing its reliability. The proposed approach is composed of three stages: i) real-time performance degradation prediction, ii) degradation detection, and iii) remaining useful life (RUL) prediction. First of all, an attention based gated recurrent unit (GRU) model is adopted for real-time prediction of performance degradation. Then, a convolutional autoencoder is used to detect the degradation or abnormal behavior of a laser, given the predicted degradation performance values. Once an abnormal state is detected, a RUL prediction model based on attention-based deep learning is utilized. Afterwards, the estimated RUL is input for decision making and maintenance planning. The proposed framework is validated using experimental data derived from accelerated aging tests conducted for semiconductor tunable lasers. The proposed approach achieves a very good degradation performance prediction capability with a small root mean square error (RMSE) of 0.01, a good anomaly detection accuracy of 94.24% and a better RUL estimation capability compared to the existing ML-based laser RUL prediction models.Comment: Published in Journal of Lightwave Technology (Volume: 40, Issue: 14, 15 July 2022

    Fault Monitoring in Passive Optical Networks using Machine Learning Techniques

    Full text link
    Passive optical network (PON) systems are vulnerable to a variety of failures, including fiber cuts and optical network unit (ONU) transmitter/receiver failures. Any service interruption caused by a fiber cut can result in huge financial losses for service providers or operators. Identifying the faulty ONU becomes difficult in the case of nearly equidistant branch terminations because the reflections from the branches overlap, making it difficult to distinguish the faulty branch given the global backscattering signal. With increasing network size, the complexity of fault monitoring in PON systems increases, resulting in less reliable monitoring. To address these challenges, we propose in this paper various machine learning (ML) approaches for fault monitoring in PON systems, and we validate them using experimental optical time domain reflectometry (OTDR) data.Comment: ICTON 202

    Degradation Prediction of Semiconductor Lasers using Conditional Variational Autoencoder

    Full text link
    Semiconductor lasers have been rapidly evolving to meet the demands of next-generation optical networks. This imposes much more stringent requirements on the laser reliability, which are dominated by degradation mechanisms (e.g., sudden degradation) limiting the semiconductor laser lifetime. Physics-based approaches are often used to characterize the degradation behavior analytically, yet explicit domain knowledge and accurate mathematical models are required. Building such models can be very challenging due to a lack of a full understanding of the complex physical processes inducing the degradation under various operating conditions. To overcome the aforementioned limitations, we propose a new data-driven approach, extracting useful insights from the operational monitored data to predict the degradation trend without requiring any specific knowledge or using any physical model. The proposed approach is based on an unsupervised technique, a conditional variational autoencoder, and validated using vertical-cavity surface-emitting laser (VCSEL) and tunable edge emitting laser reliability data. The experimental results confirm that our model (i) achieves a good degradation prediction and generalization performance by yielding an F1 score of 95.3%, (ii) outperforms several baseline ML based anomaly detection techniques, and (iii) helps to shorten the aging tests by early predicting the failed devices before the end of the test and thereby saving costsComment: Published in: Journal of Lightwave Technology (Volume: 40, Issue: 18, 15 September 2022

    Re-telling, Re-cognition, Re-stitution: Sikh Heritagization in Canada

    Get PDF
    In Canada, the language and techniques of museums and heritage sites have been adopted and adapted by some immigrant communities to make sense of their place within their new country. For some groups, “heritagization” is a new value, mobilized for diverse purposes. New museums and heritage sites serve as a form of ethnic media, becoming community gathering points, taking on pedagogical roles, enacting citizenship, and enabling strategic assertion of identity in the public sphere. This article explores this enactment of heritage and citizen-membership through a case study, the Sikh Heritage Museum, developed in Abbotsford by Indo-Canadians. Established in 2011 in an historic and still-functioning gurdwara, the museum is an example of a community’s desire to balance inward-looking historical consciousness and community belonging, with outward-looking voice, recognition and acceptance by mainstream Canadian society. The museum has also become a site of tension between top-down and bottom-up initiatives, where amateur and local expressions butt up against professionalized government activities such as the Canadian Historical Recognition Program that seek to insert formal recognition and social inclusion policies. The article considers the effects of this resource and power differential on the museum’s development, and on the sensibilities and practices of immigrant “heritage” and “citizenship” in Canada

    Solutions for 80 km DWDM systems

    Get PDF
    • 

    corecore